
7.2. CONFIGURING TABLE COLUMNS 119

[logoURL]
logo=1

In the delegate class:

function logoURL__htmlValue(&$record){
return ’val(’logoURL’))." />’;

}

Now if we load up our application we’ll see this logo displayed in the
upper left corner of the view tab, and in the column of the summary list.

7.2 Configuring Table Columns

By default Xataface faithfully includes all of the fields in each table as part of
the application. I.e. The list tab shows a grid where the columns correspond
to columns int the table. Often we may want to append columns to our
table that aren’t originally part of the table. This is because, in a relational
database, many fields that are relevant to records of our table may actually
be stored in other tables.

For example, consider our Posts table. It contains an ownerID field to
refer to the creator of the post, however the list tab doesn’t actually include
any information about the owner. What if we want the Posts table to also
show the owner’s email address. It goes against relational database design
best practices to actually include an ownerEmail field in the Posts table since
this would contain duplicate data with the Profile table. So it makes sense
to simply join part of the Profiles table with the Posts table so that we can
present this information along with the rest of the Post content.

7.2.1 Background: SQL Joins

If we were using direct SQL to obtain our data set, we would use a JOIN to
append columns onto our data set. E.g. the default SQL query to obtain all
of the records in the Posts table is:

SELECT * FROM Posts

To add the ownerEmail column to this dataset we would change the query
slightly:

120 CHAPTER 7. TABLE CONFIGURATION

SELECT p.*, pr.email as ownerEmail from Posts p
LEFT JOIN Profiles pr on pr.profileID=p.ownerID

We use a LEFT join (as opposed to an INNER join) because we want the
ownerEmail column to be added to the result set without actually changing
the result set rows themselves (i.e. Posts that don’t have a corresponding
owner will still be included in the result set).

7.2.2 Overriding Default Select Query

For a given table A, Xataface uses a default select query of

select * from A

to load records from the database. You can, however, override this query
with your own query by defining the __sql__ directive in the global section
of the fields.ini file (i.e. before any of the field definitions). Continuing the
example of the Posts table, if we wanted to add the ownerEmail field to the
Posts table we would add the following to the beginning of the fields.ini file
for the Posts table:

__sql__ = "SELECT p.*, pr.email as ownerEmail from Posts p
LEFT JOIN Profiles pr on pr.profileID=p.ownerID"

Now if we load up our application and enter the list tab of the Posts table
we’ll see an ownerEmail column.

Query Constraints

Before you go hog wild and start overriding the select queries for all of your
tables, please consider the following constraints:

Given a table T. Let A be the set of records returned by the default select
query of T (i.e. select * from T). Let A∗ be the set of records returned by
the custom select query (i.e. the query specified in the __sql__ directive of
the fields.ini file). Let Ai and A∗

i be the ith rows of A and A∗ respectively.
The following two invariants must hold:

∀i ∈ {1, .., |A|}, Ai ⊆ A∗
i (7.1)

|A| = |A∗| (7.2)

7.3. MYSQL VIEWS 121

What this means in English is that your custom query cannot alter the
result set in any way, except to add columns. It can not remove or reorder
rows, and it cannot remove columns.

Strategies for Meeting Constraints

1. Use LEFT joins only.

2. Join only tables that have at most 1 row corresponding to each row in
the default query.

3. If you need to join a table with (or potentially could have) more than
1 corresponding row, use a subquery with set functions to reduce the
number of possible corresponding rows.

7.3 MySQL Views

Suppose we want to create a report to show the distribution of Profiles by
country. An easy way to do this would be to create a view as follows:

CREATE VIEW Profiles_Countries AS
SELECT country, count(*) as num
FROM Profiles
GROUP BY country

If we try to navigate to this view in Xataface:

index.php?-table=Profiles_Countries

We’ll receive an error message stating that the table has no primary key
assigned. Xataface requires a primary key to be defined in all tables that
it works with. This allows it to know which records are unique. Views,
unfortunately, don’t have any primary keys assigned by MySQL, however,
we can use the fields.ini to assign the primary key ourselves.

To add a primary key to the Profiles_Countries view, we would add
the following to the Profiles_Countries fields.ini file:

[country]
Key=PRI

