
Building Data-centric Websites
with Dataface

Steve Hannah
Faculty of Applied Sciences
Simon Fraser University

shannah@sfu.ca

What does Data-centric Mean?

● Centred around the data of the site.
● Use a database to store data
● Separate the Logic from the Presentation
● Through-the-web editing of data

Examples of Data-centric Apps

● Weblogs
● Course management Apps (e.g., WebCT)
● Event / Volunteer Registration Apps
● Research profile systems

Any web site can be created in a Data-centric way by storing
the content in a database, and using templates to display the
content.

Advantages of Data-centric
Design

● Reusability
● Maintainability
● Separates responsibility (Designers,
Developers, and Content Owners)

● Improved information collaboration and
sharing.

● Inherent benefits of database (searching,
sorting, relationships, etc...)

Disadvantages of Data-centric
Design

● More complicated to develop (HTML vs
MySQL, PHP)

● May be difficult to add features after original
development cycle.

● Portability. (Requires Database and Libraries
to be installed)

Conventional Data-centric
Development Procedures

● Step 1: Design database

● Step 2: Create forms for users to enter/edit
data in the database

● Step 3: Create web pages which draw con-
tent from the database.

Which steps are harder?

● Designing the database is “easy” (i.e., very
little “grunt” work)

● Creating web pages that draw data from the
database is “easy” (e.g., you can reuse tem-
plates from site to site).

● Building forms to administer the application is
“hard”. (repetitive – yet important!! Poorly
designed forms can cause irreparable dam-
ages).

Enter Dataface

● Most of the administrative functionality of
data-centric websites is the same from site to
site.

● Dataface is a web application framework that
factors out all of this common functionality.

Dataface Core Technologies

● PHP 4/5, MySQL 3.23/4

● Uses PEAR class libraries:
● HTML_QuickForm
● SQL_Parser
● XML_Serializer, and more..

● Smarty Template Engine

● FCKEditor (HTML Editor)

Data-centric Design with
Dataface

● Step 1: Design database

● Step 2: Decorate database application

● Step 3: Design web pages which draw
content from database.

Example Dataface Application

● A Group Content Management System.

● Researchers maintain personal profile and
publication lists.

● Research groups maintain projects, web-
sites, publications, and members.

Example Application: Finished
Product

● Login page

Example Application: Finished
Product (2)

● Super-user's Homepage

Example Application: Finished
Product (3)

● Regular user's homepage

Example Application: Finished
Product (4)

● Edit Personal Profile

Example Application: Finished
Product (5)

● Manage Publications

A Simple Dataface Application

<?

require_once '/pub_html/dataface/dataface-public-api.php';
df_init(__FILE__, 'http://fas.sfu.ca/fas/dataface');

$app =& Dataface_Application::getInstance();
$app->display();

?>

Line-by-line Annotation

require_once '/pub_html/dataface/dataface-public-api.php'
// Load the Dataface Public API

df_init(__FILE__, 'http://fas.sfu.ca/fas/dataface');
// Initialize the application

$app =& Dataface_Application::getInstance();
// Obtain a reference to the Application object

$app->display();
// Displays the application

Configuration Info

● What about the database connection info?
(e.g., Host name, Username, Password,
etc...)
– We include a file called conf.ini in the same
directory.

Example conf.ini file

[_database]
host = localhost
user = root
password = mypass
name = simple_app_db

[_tables]
Profiles = Profiles
Addresses = Addresses
Appointments = Appointments

conf.ini file Annotated

● [_database] section contains connection
information for connecting to the MySQL
database.

● [_tables] section lists the tables that should
be included in the application navigation
menu.
– TableName = Table Label

Building an Application

● We will build a simple single-table application
to manage user profiles.

● Profiles will need to contain data such as
usernames, password, birth dates, personal
profile blurbs, modification dates, etc...

● We won't deal with security yet.

Step 1: Designing the Database

● First step is always to design the database
● Pick your poison (PHPMyAdmin, Direct SQL
commands, other DB Admin apps).

● Example using PHPMyAdmin:

Step 1: Designing the Database
(SQL)

● Resulting SQL for PHPMyAdmin table
creation:

CREATE TABLE `Profile` (
`ProfileID` INT(11) NOT NULL AUTO_INCREMENT ,
`Username` VARCHAR(64) NOT NULL ,
`Password` VARCHAR(64) NOT NULL ,
`Email` VARCHAR(128) ,
`BirthDate` DATE,
`Blurb` TEXT,
`Gender` ENUM('Male', 'Female') NOT NULL ,
`LastModified` TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL ,
PRIMARY KEY (`ProfileID`) ,
INDEX (`Email`) ,
UNIQUE (
`Username`
),
FULLTEXT (
`Email` ,
`Blurb`
)
) TYPE = MYISAM ;

Step 2: Make Web App

● We will make a directory for our application.
We'll call it simple_app

● Create index.php and conf.ini files inside our
simple_app directory.

● Add .htaccess file to simple_app directory to
make sure that the conf.ini file is not served
to the web. THIS IS IMPORTANT.

Step 2: Make Web App
(index.php file)

● The index.php file serves as the access point
for the application.
<?
require_once '../dataface/dataface-public-api.php';
df_init(__FILE__, 'http://localhost/~shannah/dataface');

$app =& Dataface_Application::getInstance();
$app->display();

?>

Step 2: Make Web App (conf.ini
file)

● The conf.ini file goes in the same directory as
the index.php file.

[_database]
host = localhost
user = root
password =
name = simple_app

[_tables]
Profile = Profile

Step 2: Make Web App
(.htaccess file)

● The conf.ini file contains sensitive database
connection information and should not be
served by the web server.

● Include an .htaccess file in the simple_app
directory to tell Apache NOT to serve .ini
files:

<FilesMatch "\.ini$">
Deny from all
</FilesMatch>

Using the Web App

● The application is now ready to use! Let's
take a look.

● Point browser to the index.php file:

What now?

● The application looks kind of boring. What
can we do with it?
– Create new records
– Edit and delete records
– Search for records
– Browse through the records

● First let's create a new record.

Creating a new record (1)

● Select new record from the actions to be
performed menu.

Creating New Record (2)

Step 3: Decorating the
Application

● This basic application is functional, but we
can do better.

● Goals of Decorating:
– More user friendly
– More secure
– More features

Step 3: Decorating cont'd (The
tables directory)

● Follow these steps (we'll explain and
generalize later):
– 1. Create a directory named tables inside the
simple_app directory.

– 2. Create a directory named Profile inside the
tables directory.

– 3. Create a file named fields.ini, and place it
inside the Profile directory.

Step 3: Decorating (cont'd)
Application Directory Structure
● Your application directory structure should
now look like this*:

● Note the naming convention. The Profile directory is named
after the Profile table. All files inside this directory will pertain
to the Profile table.

● If we wanted to decorate a table named foo we would create
a directory named foo.

* There is also an .htaccess file that
is not shown in this image because
OSX finder hides files beginning with
'.'.

Step 3: Decorating (cont'd) The
fields.ini file

● The fields.ini file (in the Profile directory)
contains additional settings for the Profile
table and its fields.

● Let's change the label for the BirthDate field from “BirthDate”
to “Birth Date” (i.e., put a space between “Birth” and “Date”

so it reads better by adding the following to the fields.ini file:

[BirthDate]
widget:label = Birth Date

Step 3: Decorating (cont'd)
Changing Field Label

● The BirthDate field before:

● The BirthDate field after:

– Notice the space between “Birth” and “Date”

Step 3: Decorating (cont'd)
Adding Field Descriptions

● Let's add a note to the field so the user
knows how to format the date.

● Modify the fields.ini file so it now contains:
[BirthDate]
widget:label = Birth Date
widget:description = "YYYY-MM-DD"

● Now the BirthDate field looks like:

Step 3: Decorating (cont'd)
Customizing the Widget type

● On second thought, let's use pull-down
menus to select the date, rather than a text
field.

● Change the fields.ini file so it contains:

[BirthDate]
widget:label = Birth Date
widget:type = date

● Now the BirthDate field looks like:

Available (Simple) Widget
Types

● Text – text field
● Textarea – Text Area
● Htmlarea – HTML Editor (FCKEditor)
● Date – Month/Day/Year pull-down lists
● Select – Select List*
● Checkbox – Either a single checkbox or a
checkbox group

● Autocomplete – Textfield the automatically
completes input based on a value list.

● Hidden – A hidden field
● Static – Uneditable field

fields.ini file Changes...

[Username]
widget:description = "Unique user name to log into the system."

[Password]
widget:description = "Minimum 6 characters"

[Email]
widget:description = "e.g., john_doe@foo.com"

[BirthDate]
widget:label = Birth Date
widget:type = date

[Blurb]
widget:type = htmlarea

[LastModified]
widget:type = static

Results...

Vocabularies and Value lists

● Valuelists provide vocabularies that can be used by
selection fields (e.g., checkbox groups, and select
lists).

● Valuelists are defined in the valuelists.ini file.

● Each table folder may have its own valuelists.ini
file.

● You may place a global valuelists.ini file in the site's
directory to define valuelists to be used by all
tables.

Adding Valuelists to Table
(Example)

● Let's define some valuelists for the Profile
table in our application. Do the following:
1. create a file named valuelists.ini inside the
Profile directory. Your application directory
structure will now look like:

Adding Valuelists to Table
(Example) cont'd...

● Place the following in the valuelists.ini file:

[Colors]
red = Red
green = Green
blue = Blue

● This defines a value-list named Colors that
can be used as a vocabulary for select,
checkbox, and autocomplete fields.

Adding Favourite Colour Field

● We want to add a field to the Profile table for
the user to enter his favourite colour.

● Steps:
1. Add field to table using PHPMyAdmin (or SQL).
ALTER TABLE `Profile` ADD `FavouriteColour` VARCHAR(32) AFTER `Email

●

The FavouriteColor field now looks like:

Using the selectWidget

● We want the user to choose his favourite
colour from a list of the colors in the Colors
value-list.

● Add the following to the fields.ini file:
[FavouriteColour]
widget:type = select
vocabulary = Colors

The vocabulary attribute means that the select list should use the
value list named Colors for its options.

Using the selectWidget (cont'd)

● Now the FavouriteColour field looks like:

● The HTML source generated for this select list is:

<select class="default" id="FavouriteColour" name="FavouriteColour">
<option value="">Please Select...</option>
<option value="red">Red</option>
<option value="green">Green</option>
<option value="blue">Blue</option>

</select>

Dynamic Value-lists

● Add a 'SupervisorID' field to the 'Profile' table to track who
supervises who.

● We want to be able to select a Profile from a list of available
profiles in the 'SupervisorID' field.

● Use a dynamic value-list whose values are drawn from the
database.

● Add the following to the valuelists.ini file:

[Profiles]
__sql__ = "SELECT ProfileID, Username FROM Profile ORDER BY Username"

Dynamic Value-lists (cont'd)

● Add following to fields.ini file:

[SupervisorID]
widget:type = select
vocabulary = Profiles

● Look at the changes in the application:

Validation

● Client-side and Server-side validation handled by Dataface.

● Fields designated “NOT NULL” in SQL table definition are
automatically required fields.

● Making 'Email' a required field using fields.ini file:

[Email]
widget:description = "e.g., john_doe@foo.com"
validators:required = true
validators:required:message = "You have to enter an email address"

● Email field now is required (note the red dot):

Validation (cont'd)

● Now, if we try to save form with 'Email' field empty, we get
error message:

More Validation Rules

● We can validate using other rules too:
– required
– maxlength
– rangelength
– regex
– email
– emailorblank
– lettersonly
– alphanumeric
– numeric
– nopunctuation
– nonzero

Validation Examples

● Regex:

[Username]
widget:description = "Unique user name to log into the system."
validators:regex = "/^shannah$/"

The above example is unrealistic but it accepts only “shannah” as input for the
Username field.

● Require a valid email address for the Email field:
[Email]
widget:description = "e.g., john_doe@foo.com"
validators:email = true

Relationships

● We previously added a 'SupervisorID' field to the Profile
table to store the supervisor of a record.

● What if we want to see the profiles supervised by the
current profile.

● We will add a relationship to the 'Profile' table called
'Supervised'

Defining a Relationship

1) Create a file named 'relationships.ini' in the tables/Profile
folder. The directory structure of the application should now
look like:

Defining a Relationship (2)

1) Add the following to the relationships.ini file:

[Supervised]
__sql__ = "SELECT * FROM Profile WHERE SupervisorID = '$ProfileID'"

This says that Profiles whose 'SupervisorID' field match the
ProfileID of the 'current' record are part of the 'current'
record's 'Supervised' relationship.

Defining a Relationship (3)

1) Check the changes in web browser:

Notice the “Supervised” tab. This will show a list of all
“Supervised” profiles of the current profile.

What can we do with
relationships?

✔ Add new records to relationship

✔ Add existing records to relationship (for many-to-many
relationships only).

✔ Remove records from relationship

Want more customization?

● What if we want to customize the behavior of our
application?

● Use custom templates and style sheets to customize
Look & Feel

● Add configuration directives in conf.ini / fields.ini files to
enable/disable features

● Use Delegate Classes to add permissions, display,
import/export, custom serialization, calculated fields, and
more.

More Information

● Dataface Documentation:
http://www.fas.sfu.ca/dataface/documentation

● Sign up for Dataface mailing list:
http://lists.sourceforge.net/lists/listinfo/dataface-users

