I Building Data-centric Websites
I with Dataface

Steve Hannah
Faculty of Applied Sciences
Stmon Fraser University
shannah(@sfu.ca

I What does Data-centric Mean?

e Use a database to store data
e Separate the Logic from the Presentation
 Through-the-web editing of data

I e Centred around the data of the site.

Examples of Data-centric Apps

e \Weblogs

 Course management Apps (e.g., WebCT)
e Event / Volunteer Registration Apps

e Research profile systems

Any web site can be created in a Data-centric way by storing
the content in a database, and using templates to display the
content.

Advantages of Data-centric
Design

Reusability

Maintainabillity

Separates responsibility (Designers,
Developers, and Content Owners)
Improved information collaboration and
sharing.

Inherent benefits of database (searching,
sorting, relationships, etc...)

Disadvantages of Data-centric
Design

e More complicated to develop (HTML vs
MySQL, PHP)

 May be difficult to add features after original
development cycle.

e Portability. (Requires Database and Libraries
to be installed)

Conventional Data-centric
Development Procedures

e Step 1: Design database

o Step 2: Create forms for users to enter/edit
data In the database

o Step 3: Create web pages which draw con-
tent from the database.

Which steps are harder?

e Designing the database is “easy” (i.e., very
little “grunt” work)

e Creating web pages that draw data from the
database is "easy” (e.g., you can reuse tem-
plates from site to site).

e Building forms to administer the application is
“hard”. (repetitive — yet important!! Poorly
designed forms can cause irreparable dam-
ages).

Enter Dataface

 Most of the administrative functionality of
data-centric websites is the same from site to
site.

e Dataface is a web application framework that
factors out all of this common functionality.

Dataface Core Technologies

PHP 4/5, MySQL 3.23/4

Uses PEAR class libraries:
e HTML_QuickForm

e SQL Parser

e XML Serializer, and more..

Smarty Template Engine () Smartvm

TEMPLATE ENGINE

FCKEditor (HTML Editor) s g4 the tex ecitor ror imterner

editor

I Data-centric Design with
I Dataface

I e Step 1: Design database
e Step 2: Decorate database application

e Step 3: Design web pages which draw
content from database.

Example Dataface Application

e A Group Content Management System.

e Researchers maintain personal profile and
publication lists.

e Research groups maintain projects, web-
sites, publications, and members.

I Example Application: Finished
I Product

I e Login page

FAS

Please log in using your full name {eg: John Smith).

Faculty of Applied Sciences
Group Content Management System (GCMS)

*Name:

*Password:

I Login)
* denctes required field

navigation |

fj Groups

7 News

3 Personal
T3 Publications
") Web Pages
(3 Web Sites

gcms menu |

@ Home

[Edit My Profile

By view My

Publications

[F View My Groups

Product (2)

e Super-user's Homepage

Found 256 of 256 Records in table Growps.

Search:

Example Application: Finished

Jump: [T4930 ~]

Submit

| actions to be performed =

Welcome to GCMS (Group Content Management System)

Available Actions
Personal
1. Edit your profile

2. Add Personal Publication

Group

1. Edit Group Profile: [Select Group... fid

2. Add New Publication to group: I Select Group... _v_}

3. Add Existing Publication to group: I Select Croup... :]
4. Add New Member to group: | Select Croup... :]

5. Add Existing Member to group _'I Select Group... |
6. Add New News Item to group: | Select Group ... :]
Web pages

L. Edit Web page: | Seject Web page... A

Example Application: Finished

Product (3)

e Regular user's homepage

gcms menu

[F Home

3 Edit My Profile

[y View My
Publications

By View My Groups
p

¥ Log out

Search:

Welcome to GCMS (Croup Content Management System)

Available Actions
Personal

1. Edityour profile

2. Add Personal Publication

Group

1. Edit Group Profile: Select Group_" vi

Z. Add New Publication to group: I Select Croup... -:j

3. Add Existing Publication to graup:l Select Group... ;I

4. Add New Member to grﬂup:l Select Croup... j

5. Add Existing Member to group :I Select Group... :i

6. Add New Mews Item to group: I Select Group ... :‘

Web pages
1. EditWeb page:| Select Web page... ~|

Submmit

Example Application: Finished
Product (4)

Edit Personal Profile

<< Go Back)
Search:| Submit
Recent Ilecords:l Brian Funt v
Brian Funt
— = 1
gcms menu J main | | publications | | groups |
& Home Personal
First name
@ Edit My Profile llohn
s Last name
I3 View My T
Publications s

Contact numbers

View My Groups Name Number

[Delete | Dffice 555-555-5555

@ Log out Add Row

Email address

Y. john_doeddstu.ca
smith| at-sign sfu.ca
Degree(s)

Description of Research
4 short description of the research that this person is involved with
=] Source | H & E: BB S

i@ .;3;5:'}'5;@@

xample Application:

Product (5)

Manage Publications

et

[Home

Edit My Profile

i

View My
Publications

View My Croups

Log out

inished

<= Go Back - -
Search: | Submit
Recent Records:l Brian Funt |

Brian Funt

[main | [publications | [groups |

Found 109 Records in relationship publications

[;j;;\dd Mew Publ;caltlnns.netorrl: i {:“\.dd“EIlSTII‘IEi |’I.Ib|.l.|:a[I.DI'|5 HEtDrEi .ﬁlmpnrt Publications .I:tecnrd:.;
Now Showing 1 to 30 Mext: 31 to 60>>

LS S A S) = S A [e B

puibid
1293
1294
1285

12596

1300

1301
1302
1303
1304

publication
type
Refereed
| Article
Refereed
Article
Refereed
| Article
Refereed
Article
Refereed
Article
Refereed
Article
Refereed
| Article

Refereed
Article

Refereed
Article
Refereed
Article
Refereed
| Article
Refereed
| Article
Referreed

publication
_ date
2005-12-07
14:00:10
2005-12-07
14:00:10
2005-12-07
1400010
2005-12-07
14:00:10
2005-12-07
14:00:10
2005-12-07
14:00:10
2005-12-07
14:00:10

2005-12-07
14:00:10

2005-12-07
14:00:10
2005-12-07
14:00:10
2005-12-07
14:00:10
2005-12-07
14:00:10
ANNS-12-07

(Display 30 | Records per page)

biblicgraphic citation

Funt, B., and Finlaysen, G. The State of Computational Color Constancy,’ Proceedings First Intersociety

Color Council Panchromatic Conference, 38-39, Feh. 1805,

Finlaysen, G., and Funt, B., "Optimal Spectral Sharpening,’ Proceedings First Intersociety Color Council
Panchromatic Conference, page 41, Feb. 1995,

Funt, B.V., 'Experiential Reasoning (Abstract)', 1992 AAA| Spring Symposium on Reasining with
Diagrammatic Representations, AAAl, Mar, 1952,

B. Funt, K. Barnard, M. Brockington and V. Cardei,'Lluminance-Based Multi-5Scale Retinex,' Proc. AlC
Color 87, Vol.|, 330-333, Kyoto, Japan, May 1997,

B. Funt, V. Cardei and K. Barnard, 'Neural Metwork Color Constancy and Specularly Reflecting Surfaces,’
Proc. AIC Color 97, Volll, 523-526, Kyoto, lapan, May 1357,

V. Cardei , B. Funt and K. Barnard,"Modeling Celor Constancy with Neural Networks,”Proc. Int. Conf. on
Vision, Recognition, and Action: Meural Medels of Mind and Machine, Boston, May 29-31, 1957
Barnard, K. and Funt, B., "Analysis and Improvement of Multi-5cale Retinex,' Proc. Fifth IS&T Color
Imaging Conference, Scottsdale 1957

Finlaysen, G. D., Dueck, 1., Funt, B.V., Drew, M.5,, 'Colour Eigenfaces,’ Proc. Third International
Workshop on Image and Signal Processing Advances in Computational Intelligence, Nove mber 4-7,
1986, Manchester, UK

Finlaysen, G.D., Chatterjee, 5.5., and Funt, B.V,, 'Colour-Texture Indexing,’ Proc. |EE Colloguium on
Image Databases, 1986,

Barnard. |., Finlayson, G., Funt, B., 'Colour Constancy for Scenes with Spectrally Varying
Ilumination,'ECCVS6 Fourth European Conference on Computer Vision, Vol. |l, pages 3-15, April 1986
Finlayson, G., Chatterjee, 5., and Funt, B., 'Colour Angular Indexing,' ECCV 96 Fourth European
Conference on Computer Vision, Vol. I, pages 16-27, April 1996.

B. Funt, V. Cardei and K. Barnard,'Learning Color Constancy,’ Proc. IS&T/SID Fourth Color Imaging
Conference: Color Science, Systems and Applications, pp. 58-80, Scottsdale, Arizona, November 1956,
Finlavsnn. . and Funt. R ‘Color Constancye Hinder a Varving lluminatinn’ Proceedinas Fifth

I A Simple Dataface Application

<?
I require_once ‘/pub_html/dataface/dataface-public-api.php’;
df_init(__FILE__, 'nttp://fas.sfu.ca/fas/dataface’);

$app =& Dataface_ Application::getinstance();
$app->display();

?>

Line-by-line Annotation

require_once '/pub_html/dataface/dataface-public-api.php
// Load the Dataface Public API

df init(__FILE , 'http://fas.sfu.ca/fas/dataface’);
// Initialize the application

$app =& Dataface Application::getinstance();
// Obtain a reference to the Application object

$app->display();
// Displays the application

Configuration Info

e \What about the database connection info?
(e.g., Host name, Username, Password,

etc...)
- We include a file called conf.ini in the same
directory.

Example conf.ini file

[database]
host = localhost
user = root

password = mypass
name = simple_app _db

[tables]

Profiles = Profiles

Addresses = Addresses
Appointments = Appointments

conft.ini file Annotated

o [database] section contains connection
information for connecting to the MySQL
database.

o [tables] section lists the tables that should
be included in the application navigation

menu.
— TableName = Table Label

Building an Application

* \We will build a simple single-table application
to manage user profiles.

e Profiles will need to contain data such as
usernames, password, birth dates, personal
profile blurbs, modification dates, eftc...

* \We won't deal with security yet.

I Step 1: Designing the Database

e Pick your poison (PHPMyAdmin, Direct SQL
commands, other DB Admin apps).
e Example using PHPMyAdmin:

I * First step is always to design the database

||||| pe (3 LengthiValue Collation ute Default™ EE
ProfilelD e . ki @00 C
Usemame e | r) =1 T =10
R _______J__' 64 = n : —? 0
mail 128 | 2 3 = B Rl B ey [
BitnDate || DATE %) = &)
....... — “.TEET. .TI —] e o _:'
Gender “Male’ n ; i$)
LastModified IMESTA 4 e - el e

Step 1: Designing the Database
(SQL)

e Resulting SQL for PHPMyAdmin table
creation:

CREATE TABLE "Profile” (

“ProfilelD (11) NOT NULL AUTO_INCREMENT ,
"Username’ (64) NOT NULL ,

‘Password’ (64) NOT NULL ,

"Email’ (128),

“BirthDate®

“Blurb® ,

“Gender’ ('Male', 'Female') NOT NULL ,

“LastModified DEFAULT CURRENT_TIMESTAMP NOT NULL ,
PRIMARY KEY ('ProfilelD") ,

INDEX ("Email"),

UNIQUE (

"Username’

),

FULLTEXT (
"Email

‘Blurb

)

) TYPE = MYISAM ;

Step 2: Make Web App

* WWe will make a directory for our application.
We'll call it simple app

e Create index.php and conf.ini files inside our
simple app directory.

e Add .htaccess file to simple app directory to
make sure that the conf.ini file is not served
to the web. THIS IS IMPORTANT.

I Step 2: Make Web App
I (index.php file)

 The index.php file serves as the access point
I for the application.

<?

require_once '../dataface/dataface-public-api.php’;
df_init(__FILE__, 'nttp://localhost/~shannah/dataface’);

$app =& Dataface Application::getinstance();
$app->display();

?>

I Step 2: Make Web App (conf.ini
file)

 The cont.ini file goes in the same directory as
I the index.php file.

[database]

host = localhost
user = root
password =

name = simple_app

[tables]
Profile = Profile

Step 2: Make Web App
(.htaccess file)

 The conf.ini file contains sensitive database
connection information and should not be
served by the web server.

* Include an .htaccess file in the simple app
directory to tell Apache NOT to serve .ini
files:

<FilesMatch "\.ini$">
Deny from all
</FilesMatch>

Using the Web App

 The application is now ready to use! Let's
take a look.
e Point browser to the index.php file:

Found 0 of 0 Records in table Profile.
Mow showing 1L of O

Jump: .
This Record:
Search: " Submit
detalls | [st | [find -) -
actions to be performed ™ |
main
navigation (
No records matched your request.
"3 Profile

Powered by Dataface
Dataface framework designed and developed by Steve Hannah, Faculty of Applied Sciences Web Services Developer (Simon Fraser University).
(c) 2005 All rights reserved GCMS (Group Content Management System) Developed by Faculty of Applied Sciences Web Team at Simon Fraser University

Stylesheets adapted from Plone 2.0.5 styleshest

I What now?

can we do with it?

- Create new records

- Edit and delete records

- Search for records

— Browse through the records

I e The application looks kind of boring. What

e First let's create a new record.

I Creating a new record (1)

o Select new record from the actions to be
I performed menu.

| _actions to be performed ¥
[3 new record
[show all

| 5 delete

|5 delete found records

find

P NN

I i pu PR EARNIL S

“details | [st ||

HE IR

|
L

— Profile

Username

lshannah

Password

Email

shannah@sfu.ca

BirthDate

|1978-12-27

Blurb

Blah blah blah

Gender
| Please Select... &

LastModified

|

I Step 3: Decorating the
I Application

e This basic application is functional, but we
I can do better.

e Goals of Decorating:
— More user friendly
- More secure
— More features

I Step 3: Decorating cont'd (The
I tables directory)

I e Follow these steps (we'll explain and

generalize later):
- 1. Create a directory named tables inside the
simple app directory.

- 2. Create a directory named Profile inside the
tables directory.

- 3. Create a file named fields.ini, and place it
inside the Profile directory.

I Step 3: Decorating (cont'd)
I Application Directory Structure

e Your application directory structure should

. tnX. :
now look like this™: & conf.in
¥ index.php
.= tables
* There is also an .htaccess file that | Profile
is not shown in this image because

OSX finder hides files beginning with | _ fields.ini

e Note the naming convention. The Profile directory is named
after the Profile table. All files inside this directory will pertain

to the Profile table.
e |If we wanted to decorate a table named foo we would create

a directory named foo.

I Step 3: Decorating (cont'd) The

I fields.ini file
e The fields.ini file (in the Profile directory)
I contains additional settings for the Profile
table and its fields.

e Let's change the label for the BirthDate field from “BirthDate”
to “Birth Date” (i.e., put a space between “Birth” and “Date”

so it reads better by adding the following to the fields.ini file:

[BirthDate]
widget:label = Birth Date

Step 3: Decorating (cont'd)
Changing Field Label

e The BirthDate field before: ‘o

 The BirthDate field after: s

[1078-12-27

— Notice the space between “Birth” and “Date”

Step 3: Decorating (cont'd)
Adding Field Descriptions

e | et's add a note to the field so the user
knows how to format the date.
 Modify the fields.ini file so it now contains:

[BirthDate]
widget:label = Birth Date
widget:description = "YYYY-MM-DD"

* Now the BirthDate field looks like:

[1078-12-27

Step 3: Decorating (cont'd)
Customizing the Widget type

e On second thought, let's use pull-down
menus to select the date, rather than a text

field.
e Change the fields.ini file so it contains:

[BirthDate]
widget:label = Birth Date
widget:type = date

e Now the BirthDate field looks like:

Birth Date

27 12 [Dee 2 (2001 121

I Available (Simple) Widget
I Types

* Text — text field
I e Textarea — Text Area

e Htmlarea — HTML Editor (FCKEditor)

 Date — Month/Day/Year pull-down lists

e Select — Select List”

e Checkbox — Either a single checkbox or a
checkbox group

 Autocomplete — Textfield the automatically
completes input based on a value list.

e Hidden — A hidden field

e Static — Uneditable field

fields.ini file Changes...

[Username]
widget:description = "Unique user name to log into the system.”

[Password]
widget:description = "Minimum 6 characters”

[Email]
widget:description = "e.g., john_doe@foo.com"”

[BirthDate]
widget:label = Birth Date
widget:type = date

[Blurb]
widget:type = htmlarea

[LastModified]
widget:type = static

— Profile

Username =

Unigue user name to log into the system.

shannah

Password

Minimum & characters

Email
e.d., john_doe@foo.com

shannah@sfu.ca |

Birth Date
|27 ~||Dec ~||2001 ~|

Blurb

%&&i @@l @@% lr

Vocabularies and Value lists

Valuelists provide vocabularies that can be used by
selection fields (e.g., checkbox groups, and select
lists).

Valuelists are defined in the valuelists.ini file.

Each table folder may have its own valuelists.ini
file.

You may place a global valuelists.ini file in the site's
directory to define valuelists to be used by all
tables.

I Adding Valuelists to Table
I (Example)

table in our application. Do the following:
1. create a file named valuelists.ini inside the
Profile directory. Your application directory
structure will now look like:

I e Let's define some valuelists for the Profile

= conf.ini
" index.php
{4 tables
= Profile
__| helds.ini
| valuelists.ini

Adding Valuelists to Table
(Example) cont'd...

e Place the following in the valuelists.ini file:

[Colors]

red = Red
green = Green
blue = Blue

e This defines a value-list named Colors that
can be used as a vocabulary for select,
checkbox, and autocomplete fields.

Adding Favourite Colour Field

* We want to add a field to the Profile table for
the user to enter his favourite colour.

o Steps:
1. Add field to table using PHPMyAdmin (or SQL).
ALTER TABLE Profile ADD "FavouriteColour 32) AFTER Email

The FavouriteColor field now looks like:

FavouriteColour

Using the select Widget

 \We want the user to choose his favourite
colour from a list of the colors in the Colors
value-list.

e Add the following to the fields.ini file:

[FavouriteColour]
widget:type = select
vocabulary = Colors

The vocabulary attribute means that the select list should use the
value list named Colors for its options.

Using the select Widget (cont'd)

FavouriteColour

e Now the FavouriteColour field looks like:

IPlease Select... | ~|

Please Select...
Red
Creen

01
Blue

Bl el

e The HTML source generated for this select list is:

<select class="default" id="FavouriteColour" name="FavouriteColour">
<option value="">Please Select...</option>
<option value="red">Red</option>
<option value="green">Green</option>
<option value="blue">Blue</option>
</select>

Dynamic Value-lists

Add a 'SupervisorlD' field to the 'Profile’ table to track who
supervises who.

We want to be able to select a Profile from a list of available
profiles in the 'SupervisorID' field.

Use a dynamic value-list whose values are drawn from the
database.

Add the following to the valuelists.ini file:

[Profiles]
__sqgl__ ="SELECT ProfilelD, Username FROM Profile ORDER BY Username"

I Dynamic Value-lists (cont'd)

e Add following to fields.ini file:

I [Supervisor|D]
widget:type = select
vocabulary = Profiles

e Look at the changes in the application:

SupervisoriD

Please Select... | =]

Please Select...

Validation

e Client-side and Server-side validation handled by Dataface.

e Fields designated “NOT NULL" in SQL table definition are
automatically required fields.

e Making 'Email' a required field using fields.ini file:

[Email]

widget:description = "e.g., john_doe@foo.com"

validators:required = true

validators:required:message = "You have to enter an email address”

Email =
 Email field now is required (note the red dot):

shannah@sfu.ca

I Validation (cont'd)

 Now, if we try to save form with 'Email’ field empty, we get
I error message:

: . Invalid information entered.
/ - You have to enter an email address
- Please correct these fields.

o)

I More Validation Rules

 We can validate using other rules too:
— required
- maxlength
- rangelength
- regex
- email
- emailorblank
— lettersonly
— alphanumeric
— numeric

— nopunctuation
— nonzero

Validation Examples

e Regex:

[Username]
widget:description = "Unique user name to log into the system."
validators:regex = "/Ashannah$/"

The above example is unrealistic but it accepts only “shannah” as input for the
Username field.

e Require a valid email address for the Email field:

[Email]
widget:description = "e.g., john_doe@foo.com"
validators:email = true

I Relationships

* We previously added a 'SupervisorID' field to the Profile
I table to store the supervisor of a record.

e What if we want to see the profiles supervised by the
current profile.

e We will add a relationship to the 'Profile’ table called
'‘Supervised'

I Defining a Relationship

1) Create a file named 'relationships.ini' in the tables/Profile
folder. The directory structure of the application should now
look like:

" simple_app
_f tables
| & Profile
= valuelists.ini

| relationships.ini

=| felds.ini
¥ index.php
= conf.ini

Defining a Relationship (2)

1) Add the following to the relationships.ini file:

[Supervised]
__sql__ ="SELECT * FROM Profile WHERE SupervisorID = '$ProfilelD"

This says that Profiles whose 'SupervisorID' field match the
ProfileID of the 'current' record are part of the 'current’
record's 'Supervised' relationship.

Defining a Relationship (3)

1) Check the changes in web browser:

;. detalls | f list || §Hnd |
shannah
[main | [supervised |

.Fnund 0 Records in relationship Supenvised

geddd New Supervised Record

MNo records matched your request.

Notice the “Supervised” tab. This will show a list of all
“Supervised” profiles of the current profile.

I What can we do with
I relationships?

I » Add new records to relationship

+ Add existing records to relationship (for many-to-many
relationships only).

+ Remove records from relationship

I Want more customization?
e What if we want to customize the behavior of our
I application?
e Use custom templates and style sheets to customize
Look & Feel

e Add configuration directives in conf.ini / fields.ini files to
enable/disable features

e Use Delegate Classes to add permissions, display,
import/export, custom serialization, calculated fields, and
more.

I More Information

e Dataface Documentation:
I http://www.fas.sfu.ca/dataface/documentation

e Sign up for Dataface mailing list:
http://lists.sourceforge.net/lists/listinfo/dataface-users

